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Using the method given in [1] the optimal stabilization of the positions of a 
satellite’s relative equilibrium by means of flywheels, is studied. It is assumed 

that the center of mass of the gyr~tat-satellite moves as a material mint along 

a circular Keplerian orbit. 

1, Let the center of mass of the gyrostat-satellite describe a circular orbit in a 
central Newtonian force field. We shall co&aider a simplified problem, neglecting 

the influence of the motion about the mass center on the motion of the center itself. 

We take the center of attraction o, as the origin of the inertial oIgTl5 -coordinate 

system, the mass center 0 of the satellite as the origin of the moving OZ~X.$C~ - 

coordinate system and we direct the axes along the principal central axes of inertia. 

We introduce another moving oa$z-coordinate system the z -axis of which is directed 

along the line 0~0 , the y -axis along the normal to the plane stationary circular 
orbit and the x -axis complementing the y ; and z -axes to a right trihedron. We 

define the position of the body of the satellite in the orbital ox_yz -coordinate system 

in terms of the Euler angles 9, 8, cp. We denote oi, pi, yi (i = 1, 2, 3) the 
cosines of the angles between the I, y, z and xl, x2, x3: axes, and define them 
as foliows: 

cos (2, Xi) = ai, cos (y, Xi) = fii, cos (2, Xi) = yi (i = 1, 2, 3) 

o1 = sin (p sin 0, a, = cos U, sin 8, oa = cos 8 

pi = cos v sin 9 -+ sin ‘p cos 9 cos 8, fSz = - sin rp sin 9 + 

cos cp cos Q cos 0, p3 =:= - Sin e cos 9 
y1 = a3fh - a&3, yz = a83 - a3fLr Y3 = @I - 4L 

Let the axes of the three homogene~s symmetric flywheels be directed along the 
principal axes of inertia of the satellite and 0 (p, q, r) denote the angular velocity 
of rotation of the satellite about the center of mass, and let p, 9, r be the project- 
ions of the angular velocity on the axes of the moving ox1xsxa - coordinate system. 
We assume that the force function of Newtonian attraction of the satellite has the form 

al, a2, aa) = $?Ro-l - 3p (2R03)-” IC,a12 + C,as2 + C3a32- 
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where M is the mass of the gyrostat-satellite, Ci are its principal moments of in- 
ertia and p is the gravitational constant. 

The equations of absolute motion of the satellite about its center of mass can be writ- 
ten in the form of three dynamic Euler equations 

C,P’ + cc3 - C,) qr + Hsq - H,r + HI’ = 300~ (C, - C2)aBas 

(1 2 3) (1.1) 
(Hi = Ji~i, i = I, 29 3) 

Here Ji and Oi are the axial moments of inertia and relative angular velocities of 
the flywheels and @o is the angular velocity of motion of the center of mass along 

the orbit. The symbol (12 3) indicates that the remaining two equations can be 

obtained by cyclic permutation. The equations determining the pition of the satel- 

lite in the orbital olcyz -coordinate system have the form 

al’ = a2r - a3q + o. (44 - a&) 

PI’ = l&r - B3q (1 2 3) 

(1 2 3) 
(1.2) 

In addition to Eqs. (1.1) and (1.2), we shall consider another three equations describ- 
ing the rotational motions of the flywheels. With the internal friction neglected, the 

equations have the form 

J, (a1* + p’) = - ul, J, (al + q’)= - uz, Js (03’ + r’) = - US t1.3I 

where ui are the moments of the motors responsible for the rotation of the flywheels. 

From (1.1) and (1.3) we obtain 

(G - J,) p* = (C,q + Hz)r - (C,r + Ha) q + 300’ (C, - Cd X 

w3 + UI 
(1 2 3) (1.4) 

When Ui = 0 (i = 1, 2, 3) , the equations of motion of the flywheels (1.3) have 

the following integrals: 

Hr + Jlp = II, H, + Jsq = 12, Ha + Jsr = 13, Li = const 
(i = I, 2, 3) (1.5) 

When the center of mass moves uniformly along the circular orbit (ui = 0) , the 

equations of motion (1.4) and (1.2) admit the energy integral [3] which, with (1.5) 
taken into account, has the form 

2H = (Cl - J,) p2 + (C, - J,) q2 + (C, - J8) r2 + 
300~ (Cla12 + C2as2 + C,as2) - 20, [(C, - JJ ppl + 

(Cs - Jd dL + CC8 - J3) $J - 200 (4fb + Z&L + &P3) 
(1.6) 

The set of positions of relative equilibrium was fully determined in [4] under the 
assumption that the flywheels rotate with constant relative angular velocities 
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(ui = 0, i = 1, 2, 3), while in [5] it was shown that all positions of the relative equi- 

librium of the gyrostat-satellite can be divided into three classes. 
1.1. One of the principal axes of the inertia ellipsoid of the satellite is collinear with 

the f Y axis, and the other two axes are located in the OXY -plane forming a certain 

angle with the x - and y -axes. 

1,2. One of the principal axes of the inertia ellipsoid of the satellite is collinear 
with the Y -axis and the other two axes lie in the oyz-plane forming a certain angle 
with the y - and z -axes. 

1.3. None of the principal axes of inertia of the satellite are collinear with the axes 

of the orbital coordinate system . 
Let us consider one of the positions of relative equilibrium belonging to class 1.1. 

Let e. g. the X2,-axis be collinear with the 2. -axis and let the XI, $9 -axes lie in 

the ozy -plane forming the angle q0 with the X- and y -axes. Let also 

e. = lfz5h o,<qh3\<2n, cpo = 0 

We have 

p = o. sin*,, q = 0, 2 = -w$J costp* 

= 0, a, = 1, as = 0 

= sin*,, fiz = 0, flS = - cos$O 
(1.7) 

under the condition that 

HS = 0, 00 (C3 - CI) sin 9‘0 cos q0 = HI cos ‘IpO + Ha sin q0 

Let us write the equations of perturbed motion, adopting the following notation for the 
variations in the variables: 

(1.8) 

We have 

:cI - J1) p; = (c, - C&IrI - cc, - cs) OOql cos QO - BSql + 

3002 (C, - c,) (1 + %) r18 + k (1 2 3) 

?I; = w1- q3qz + r1 - 0~6, + a0 hA - r1A) (1 2 3) (LB 

6,’ = t&P% - b91 + 91 cos 90 - 006~ cos \po (1 2 3) 

The variables qr and 61 satisfy the relations 

(1.10) 
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Having written the integral (1.6) in terms of the variables (1.8)) we consider the re- 
lation COnneCting the functions(1.6) and (1. IO) in the form 

2v = 2H + hw,@,, - 3~,“G,~, = (C, - JJ pIa + (C, - J*)q,B + 
(C* - J*) rl* - 2wl WI - J1) PA + (C, - JP) qA + (1.11) 
(C* - J*) @A + ho* @,a + ha + 62) + 
302 I(C, - G) q? + 6, - c&q 21 

where h = const >O, and 

11 = X sin’*@ - (C, - JJ o. sin \po, 2s = 0, I, = - h cos q. + (1.12) 

(Cs - Js) 00 cosQo 

in the expression for 2H , When 

h > m&x {m. G, eG}, G > Cs, G > Ca (1.13) 

the function (1.11) is a positive definite function of the variables or, ql, rrr 

61, 62, b, rl~t ami 11s. From (1.12) , (1.5) and (1. ‘7) we find h 

(1.14) 

Let us assume that 

c, # csc c,> G, cs > G (1.15) 

Then the condition (I. 13) becomes, with (1.14) amd (1.15) taken into account, 

Following [I]. we consider the functional 

(I. 16) 

(1.17) 

where &’ is a nonnegative function to be determined and ni are some positive num- 
bers, Let us set the following expression [6]; 

which, in accordance with the theory of optimal stabilization, reaches a minimum 
equal t0 zero at Ui = Uib . The optimal controls Ui are found from the equations 
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dBlc%Q = 0 (j=i, 2, 3) 

and have the form 

Ul 
0 = --‘l,n, (pi - dL), ~2" = - Vana (gl - 6hM 

us0 = 42% (rl - WI&J 

(1.19) 

Substituting the expressions for uf from (1.19) into (1.18) and equating the resulting 
expression to zero [l], we obtain the function 

The time derivative of (1.11) is, by virtue of the system of equations of perturbed mo- 
tion (1.9) with (1.19). (1.1’7) and (l-20) taken into account 

J7’=-2&jP (1.21) 
The function (1.21) is a negative sign-constant of the variables Pi, 91, Fl, 68, and 

qi and the manifold E of points at which V’ = 0 has the form 

p1 = 0061, Q1 = Oo&, Fr = 006s~ qi - are arbitrary (1.22) 

We shall show that in a sufficiently small neighborhood of the unperturbed motion 

Pl = Ql = I.1 = 0, pi = 0, qt = 0 (i z I, 2, 3) 
(1.23) 

the manifold (1.22) contains none other than the unperturbed motion (1.23). 
The equations of motions (1. Q) assume, for the values given by (l-22), the following 

form: 

1 6h)2 (C, - CJ(6, - cosq&-ooH3162 = 3a$(C9 - C,). 
(1 + %J r)3 

liO~"(C~ - C2)(61 + sin*,) + odfJ6, = 300~ (CI - C2)+ 
(1 + rlz) rll 

(1.24) 

00 (G - Cl) (6,6, + G&r*, - G,cos&J + H,6, - II& = 

3% (C, - Cl) rilrl3 

Let the values of & and ?jt (i = 1,2,3) exist satisfying the system (1.24). Sub- 

stituting the values of si into (1.24) we can obtain equations which will yield Vi 

3%2(C2 - C,) (1 + 111) r3 = a,, 3%"(C, - Cl) q,q3 = a, 

3%J2 (Cl - c2) (1 + 72)qi = a81 ai = GOnSt (i = i,2,3) * 625) 

If fff # ccnst (i = 1,2,3) then a region 

tl12 + qss + qsa < ma = const (1.26) 

can always be found in which the system (1.25) has no solutions, In fact, multiplying 
the equations of the system (1.25) by 111, lls, and %I respectively, we obtain 
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%rtl + a2rla + a3113 = --a2 (1.27) 

If we take the distance between the point ?J* = 0 (i ===!I, 2,s) and the plane 
(1.27) as m , the system (1.25) will have no solution in the region (1.26) when 

a, + C. We note that when a2 =; 0, the parameter 1 in (1.11) can be chosen 
such that or and U3 will also vanish, Consequently, the necessary condition for 
the System (1.24) to have a solution in some region of the unperturbed motion (I. 23) is 
that ai = 0 (i = 1,2, 3) Let a i = 0 (i = 1,2,3). Then the system (1.24) sepa- 
rates into two independent systems 

(I + q2h3 = O, (I + qS)'ll = O, 7173 = 0 (1.28) 

62hdC2 - C3P3 - o*(C, - c3)cosl#, - H,l = 0 (1.29) 

$[oe(G - C2)& + oO(C1 - C,)sinq, + HaI = 0 

%vs- Cl) (W3 + 63sW, - &co*J + (ff361 - 446,) = 0 

Equations (1,28) together with Da = 0 from (1. lo), have a unique solution’lll = 
q2 = qs = 0 in the region 

rl1’ + %s + %? < 2 
(1.30) 

The first two equations of (1.29) vanish when 6, = 0, or when 

6 - sin 9s - Hl 
00 (cl- C2) 

If hoyevet the prameter k is chosen in accordance with the inequality 

(1.31) 

(1.32) 

then the equation 

8,2 + 622 + 6s2 + 26, sin q. - 26, cos *a = 0 (1.33) 

has no real solution in 6, for the values given by (1.31). Therefore, when (1.32) 

holds, the first two equations of (1.29) are satisfied only when 6s = 0. 

Let us consider the third equation of (1.29) together with (1.33). Substituting the 

expression for 6, from the third equation of (1.29) into (1.33), we have 

~(6,)=6,~(6,)=6,[~~+~~+~,-~~0~~0]=(~ 

klz _ h--cl 
00 G. - Cl) 

cosy?*, k2 = 

The function Cp (6,) changes its sign on the segment [ -1 -i- cos $o, 1 -i- cos qo] 

only once. If we denote the root of the equation rp (6s) = 0 by 630 ) the system 

(1.29) with (1.32) will obviously have a unique solution 6, = 6, = 6, = 0 in the 
region 

s,s -+ 6,s + 6,s < es, es = i&,2 + 6s02 (1.34) 

Thus when (1.15), (1.16) and (1.32) hold, the controls (1.19) ensure that asymptotic 
stability [7] of the unperturbed motion (1.23) for all initial perturbations belonging to 
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the region (1.30), (1.34), and minimize the functional 

J=f 
m 1 

S[ 
.k (PI - %W + $ (41 - dw + 

f. 

-ys3)2+4~niu,2]dt 

I=1 

(1.35) 

2. Consider any position of relative equilibrium belonging to the class 1.2. Let 

e.g. the x1 -axis be collinear with the 2 -axis, the z2 - and 2s -axes lie in the 

oyz -plane and form an angle 0, with the y - and Z -axes, and 

% = Jr, o<e,<n, cp=n 

We have 

P = 0, q = 00 co9 e,, r = a0 sin 8, 

a, = 0, a, = - sin eo, a, = cos Cl0 

p1 = 0, p2 = cos e,, p3 = sin 8, 

under the condition that 

HI = (Ad 400(c, - c,) sin e,c0s 8, = I-I, cos 8, - Hz sin 8, 

Retaining the notation (1.8) for the variations of the variables, we set the following 
equations of perturbed motion: 

G - JJ pl’ = (C,q, + H, + o,C2 cos e,) (rl + w. sin e,) - 

GG + & + ooG sin 0,) Cm + me cos e,) + 
(2.1) 

3@02 (C3 - c2) bl2 - sin 8,) (73 + ~0s e,) + u1 (1 23) 
. 

71 = v2'1 - v3% + OO (vS62 ?263) + rl sin 80 - ql cdo + 

o. (6, cos 8, + 6, sin e,) (I 23) 

6,’ = 6,r, - 6,q, + o. (6, sin 8, - 6, cos e,) + rl cos 8, - 

q1 sin 8, (1 2 3) 

The relations (1.10) now become 

q = 6,s + 6,s + 632 + 2b2 cos 8, + 26, sin 8, = 0 (2.2) 
CD, = ~2 + ~~2 + qs2 + 2qs cos 0, - 2q, sin e. = 0 
aa = 6,~ + a27j2 + a379 + q2 ~0s 8, - a,sin e, + r13 sin e, + 

6, cos 8, = 0 

Let the following condition hold for the mements of inertia of the gyrostat-satellite: 

G> c2 = c3 (2.3) 

Having written the integral (1.6) in terms of variations of the variables, we consider the 
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relation connecting the functions (1.6) and (2.2), of the form 

21’ = 28 + $ci#Dt - 3cgC@, = (C, - JJ pr2 + (2.4) 

where $it = con& > 0 and where in the expression for m we have set 

Gl - JJ Ql’ + (C, - JSbl” - 200 Wl - Jl) PA + 
G - J3) & + (C3 - J,)~~~sl + ho, (813 + 6,’ + 633) + 

3003 (Cl - C2) rll3 

I, = 0, I2 + coo (C, - J2) cos B. = A1 cos go, I3 + coo’ 

(C3 - J3) sin 8, = A, sin 8, 
(2.5) 

When (2.3) and 

h> %$l (2.6) 

the function (2.4) is a positive definite function of the variables PI, Qri rl,6,, 6,, 6, 
and Tr. 

Repeating the above arguments, we can find the optimal controls up. The con- 
trols have the form (1, 19), the function P in the expression (1.17) haa the form 
(1.20) and the time derivative of the function (2.4) 

2V’ = ---I’/n~(p, - o&3 -I- 1 / n, (q1 - q&)3 + l/ n3* 

6 - @,63)31 

constructed using the equations of perturbed motion (2.1) with (1.19), (1.17) and (1.20) 
taken into account, is a negative sign-coustant function of variations of the variables 
used. 

Similarly we can show that when the conditions (2.3), (2.6) and 

(2.7) 

all hold, the manifold (.l. 22) in which ‘r = 0 contains no complete motions of the 
system in the region 

V + &2 + 632 < 4, rll3 + q33 + 733 < 2 (2.8) 

except the unperturbed motion (1.23). Thus, when the conditions (2.3), (2.6) and 
(2.7) all hold, the controls (1.19) ensure the ~y~p~~sta~y of the unperturbed 
motion (1.23) relative to the variables PI, Qrt 17 I¶ rr 3 and 711 for all initial 
perturbations belonging to the region (2. S), and minimize the functional (1.35). 

In [8] it was shown that when cI # C, # C, and 0, # l/qar and 3/an , all posi- 
tions of the relative equilibrium of‘class 1.2 can be asymptotically stabilized by mo- 
ments applied to the flywheels. If on the other hand either the inertia ellipsoid of 
the gyr~tat-sa~~ite is an ellipsoid of revolution i.e. ct > ca = ca or @a = 
l/&v ‘/4nl, then the position 0 f relative equilibrium cannot be stabilized with respect 
to all variables by applying moments to the flywheels since in these cases the system 
is not fully controllable [Q]. Nevertheless, as it was shown before, in these cases we 
can still attain the asymptotic stability of the positions of relative equilibrium with 
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respect to a part of the variables [l] by applying moments to the flywheels. 
The author thanks V. V. Rumiantsev for proposing the problem and constant interest, 
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