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Using the method given in [1] the optimal stabilization of the positions of a
satellite’s relative equilibrium by means of flywheels, is studied. It is assumed
that the center of mass of the gyrostat-satellite moves as a material point along
a circular Keplerian orbit,

1, Let the center of mass of the gyrostat-satellite describe a circular orbit in a
central Newtonian force field. We shall condsider a simplified problem, neglecting
the influence of the motion about the mass center on the motion of the center itself.

We take the center of attraction ¢, as the origin of the inertia} 01ENE-coordinate
system, the mass center 0 of the satellite as the origin of the moving ox,%:75 -

coordinate system and we direct the axes along the principal central axes of inertia.
We introduce another moving oxyz-coordinate system the z -axis of which is directed
along the line 0,0, the y -axis along the normal to the plane stationary circular
orbit and the z ~axis complementing the y : and z -axes to a right trihedron, We
define the position of the body of the satellite in the orbital oxyz -coordinate system
in terms of the Euler angles {, 6, ¢. We denote w;, B;, v; (i = 1, 2, 3) the

cosines of the angles between the «x, y, z and x,, x,, z, axes, and define them
as follows:

cos (z, ;) = a3, cos (¥, &) = By, cos (z, x;) =V (i=14,2,3)

o, = sin @ sin 6, @, = cos psin B, a3 = cosH

f, = cos @ sin P + sin ¢ cosPpecos 6, P, = — sin ¢ sin P +
cos @ cosPpcos 0, Py = —sinBcosy

V1 = 0P — aofs, V. = aifs — asfy, Vs = P — 1B,

Let the axes of the three homogeneous symmetric flywheels be directed along the
principal axes of inertia of the satellite and @ (p, 4, 7} denote the angular velocity
of rotation of the satellite about the center of mass, and let p, ¢, 7  be the project-
ions of the angular velocity on the axes of the moving oz,z,x, - coordinate system.
We assume that the force function of Newtonian attraction of the satellite has the form
(21

U (a1, 0y, @3) = pMRy™ — 3p 2R3 [Cray? + Chag? + Cyagi—
Ys (C1 + €y + Cy)l
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where M is the mass of the gyrostat-satellite, C; are its principal moments of in-
ertia and [ is the gravitational constant,

The equations of absolute motion of the satellite about its center of mass can be writ-
ten in the form of three dynamic Euler equations

Cip"+ (Cs — Cy) gr + Hyg — Hor + Hy' = 30,2 (Cy — C,)aa0s
123) (.1
(Hi = Jimi’ i = 1) 2’ 3)

Here J; and @; are the axial moments of inertia and relative angular velocities of
the flywheels and ®@o is the angular velocity of motion of the center of mass along
the orbit. The symbol (123) indicates that the remaining two equations can be
obtained by cyclic permutation. The equations determining the position of the satel-
lite in the orbital oxyz -coordinate system have the form

a," = ar — azg + 0y (agfs — asfs) (123)
B." = Por — Bag (123) (1.2)

In addition to Eqs. (1.1) and (1.2), we shall consider another three equations describ-
ing the rotational motions of the flywheels, With the internal friction neglected, the
equations have the form

J]_ ((01. + p') = — Uy, Jg ((1)2. + q.)"-: — Uy, Jg ((1)3. + r.) = — Ug (1‘3)

where U; are the moments of the motors responsible for the rotation of the flywheels,
From (1.1) and (1. 3) we obtain

(Cl - J].) p. = (Czq + H2)7‘ - (Car + Ha) q + 3(002 (Ca - CQ)X
a0 + Ug (123 (L9

when u; =0 (i = 1,2, 3) , the equations of motion of the flywheels (1. 3) have
the following integrals;

H +JTip=1UL Hy + Jog= 106, Hy + Jor = I35, 1; =const
(i=1,23 (L3

When the centerof mass moves uniformly along the circular orbit (u; = 0), the
equations of motion (1.4) and (1. 2) admit the energy integral (3] which, with (1. 5)
taken into account, has the form

2H = (Cl_-]l)p2 + (Cz _ .,3) q2 + (Ca — Js) ,.2 +
30,2 (C1a,® + Cra,? + C3as%) — 20, [(Cl — Jy) pP. + (1.6)
(Cy — J3) gBs + (C3 — J3) rBsl — 2ao (4481 + 4P + 5Bs)

The set of positions of relative equilibrium was fully determined in [4] under the
assumption that the flywheels rotate with constant relative angular velocities
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(u; = 0, i = 1, 2, 3), while in [5] it was shown that all positions of the relative equi-
librium of the gyrostat-satellite can be divided into three classes,

1.1, One of the principal axes of the inertia ellipsoid of the satellite is collinear with
the z~-axis, and the other two axes are located in the 0xy -plane forming a certain
angle with the x - and y -axes,

1.2, One of the principal axes of the inertia ellipsoid of the satellite is collinear
with the .« -axis and the other two axes lie in the o¥z-plane forming a certain angle
with the y - and 2z -axes,

1.3. None of the principal axes of inertia of the satellite are collinear with the axes
of the orbital coordinate system..

Let us consider one of the positions of relative equilibrium belonging to class 1. 1.

Let e,g, the T:-axisbe collinear with the 2 -axis and let the Zy, Ts -axes lie in
the ozxy -plane forming the angle Y, with the x- and y -axes, Let also

8, = Y,m, 0<¢o<2n’ (90:0

We have
p=@esinYy, ¢g=0, z= —0,c08Y,
a,=0, ag=1, a;=0

(L1
B, =sinP, P2=0, Ps= —cos¥,

under the condition that
Hg=0, Wy (C;;‘—Cl)sinipgcosq’e:choswo"}“ﬂ.a Sin‘\pg

Let us write the equations of perturbed motion, adopting the following notation for the
variations in the variables;

pr=p— @sinP,, M= 0a; 8 =Pp,—siny,
g=¢ Na=10a,—1, 8, =258, (1.8)
re=r-+ 0,08, Mg = 03, 8 = Ps + cosPo

We have

¢, — J1) Pl. = (Cy — Cy)gry — (C: — Cy) @y COS ‘PO—HS% -+
302 (Cs — Co) (1 + M) s +u; (123)

M =Ny — Mgy + 71— 085 + 00 (Mebs — M:8s) (123) .9
61. = 627’1 — 53{71 -+ ¢y COS \po e 03062 cos \po (’1 2 3)
The variables 7; and §, satisfy the relations
(Dl == 612 -+ 622 + 632 -+ 261 sin 'lpo _— 263 cos q") =0 (1'10)

®a=ﬂ12+7§22+'ﬂ32+2ﬂg‘—‘0
Dy = 6y + O63My + Oans + NysinPy + 83 — Ny cosP, =0
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Having written the integral (1, 6) in terms of the variables (1. 8), we consider the re-
lation connecting the functions (1. 6) and (1,10) in the form
2V = 2H 4+ A0 @, — 3020, = (C; — Jy) p2 + (Cs — Ja)g> +
(Cs — Ja) 1i¥ — 20, [(Cy — J)) P18, + (Ca — Jy) 9,82 + (.11
(Cs — J3) ridsl 4 Aa, (6,2 + 8,2 4 84%) +
30,2 [(C, — Ca) . + (Cs — Comis?l

where A = const >0, and

ll = ’&Sin"po —_ (C1 — Jl) @, sin \po, lg == O, 33 R — ?LCOS "Po + (1.12)
(Ca —Ja) MWy COS‘po

in the expression for 2H ., When

A > max {mo C,, “)ocs}s Ci >0, G > C, (L13)

the function (1.11) is a positive definite function of the variables p,, ¢,, ry,
81, 03, 83, M1, and 7. From(L12), (L.5) and (L 7) we find A

__H ____Hs
M= g T @00 =gyt ads (1.14)
Let us assume that
C,#=Cs C, >C, C3>C, (1.15)
Then the condition (1. 13) becomes, with (1. 14) amd (1. 15) taken into account,
H
O :po> max {®,Cy, @,Cs}
H {1.16)
©,Cy — s ipc > max {0yCy, 0,Cs}

Following [1]. we consider the functional

o 3
T = \(F(p1» q1:71; 61, 83, 83) + Y nyu;?)de
t§( (P1) @11 71501, 65, G5 ;‘ il (1.17)

where ¥ is a nonnegative function to be determined and 7; are some positive num-
bers, Let us set the following expression [6];

’ [V; Ph 91,71, 61! 627 63; Uy, Uy, us] = (Pl - &)061) 1233 +
3
(g2 — wg82) ug + (r1 — @0g) ug + F + Z niu;® (1.18)

i=1

which, in accordance with the theory of optimal stabilization, reaches a minimum
equal to zero at u; = u,—i> . The optimal controls u; are found from the equations
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oBlou® =0 (j=1,2, 3)
and have the form
u1° = —‘1/2711 (P1 - (0061), uso = l/2n2 (ql - (0063),

(1.19)

uy® = —1,n, (ry — (0063)

Substituting the expressions for u; from (1.19) into (1.18) and equating the resulting
expression to zero [1], we obtain the function

F=Y01/n (pr— @d)* + 1/ ng (g1 — 0682)® + 1/ ngX
(ri— @85)?] (1. 20)

The time derivative of (1.11) is, by virtue of the system of equations of perturbed mo-
tion (1, 9) with (1.19), (1.17) and (1. 20) taken into account
Vi = —2F (L.21)

The function (1, 21) is a negative sign-constant of the variables P1, 91,71, 05, and
1; and the manifold E of points at which V' = 0 has the form
P1=00, ¢ =0, 7= 0d; n— are arbitrary (1.22)
We shall show that in a sufficiently small neighborhood of the unperturbed motion

P1=91=~'r1=0, lﬁi:O’ ni=0 (i=1,2,3) (1. 23)

the manifold (1. 22) contains none other than the unperturbed motion (1, 23).

The equations of motions (1. 9) assume, for the values given by (1. 22), the {ollowing
form:

[@o? (C; — C3) (83 — cospp)—woH 318, = 30y (Cy — C3)-
(1 + M) ms
[wg? (C; — Cy) (81 + siny) + 0oH 18, = 30,* (C; — ()
(1 + g m (1. 24)
wy (C3 — Cy) (8,85 + Ossimpy — 8,cospy) + Hyb, — H 83 =
3, (C3 — Cy) maMs

Let the values of §; and m; (i =1,2,3) exist satisfying the system (1.24). Sub-
stituting the values of §; into(1.24) we can obtain equations which will yield 1;

300> (Co — Ca) (1 + M) M3 = ay, 3@, (C3 — Cy) iy = a,

3ag? (Cy — C3) (1 + Mg)n1 = ag, aj ==const (i==1,2,3) a (L 25)
If a; 5= const (i=1,2,3) then aregion

n1® + Mg + Mg’ < m? = const (1.26)

can always be found in which the system (1. 25) has no solutions. In fact, multiplying
the equations of the system (1, 25) by M1, Tla,» and Mg respectively, we obtain



Optimal stabilization of the positions of a gyrostat-satellite's relative equilibrium 755

am -+ aMy + aNy = —a, (.27)

If we take the distance between the point 1; =0 (i =1, 2,3) and the plane
(1.27) as m , the system (1.25) will have no solution in the region (1,26) when
a; 7= C. We note that when @, = 0, the parameter A in (1.1l) can be chosen
such that @, and @y will also vanish, Consequently, the necessary condition for
the system (1, 24) to have a solution in some region of the unperturbed motion (1, 23) is
that ¢; = 0 (i = 1,2,3) Let g; = 0 (i =1,2,3). Then the system (1, 24) sepa-
ratesinto two independent systems
(1 + nams =0, (1 +nm =0, s =0 (1.28)
62[ mo(CZ - 03)63 — 0)0(02 - C;;)COS’\PG - Hs] = O (1' 29)
8ol 0g(Cy — C3)8; + ©o(Cy — Cy)singy + Hyl = 0
@(Cs — Cy) (8,85 + Bgsimp, — 8,compy) + (Hs6, — H18g) = 0

Equations (1. 28) together with ®, = 0 from (1.10), have a unique solutionfy =
N, = Mg = O in the region

"hs + nz‘l + nsﬂ <2 (1.30)
The first two equations of (1. 29) vanish when 62 = 0, or when
H . H
83 = cos — B = . § G (1.31)
2 =008Vt GG —Ty B 0= s — ot
If however the parameter A is chosen in accordance with the inequality
(A — w3yCy)sin® P, + (A — oCs)? cos? P, >1 (1.32)
wo? (C; — Co)? ot (Ca — C)?
then the equation
8,2 4 8,2 + 8,2 + 28, sinpy — 205 cosPpy = 0 (1.33)

has no real solution in 8, for the values given by (1.31). Therefore, when (l1.32)
holds, the first two equations of (1. 29) are satisfied only when 8, = 0.

Let us consider the third equation of (1. 29) together with (1. 33).  Substituting the
expression for §; from the third equation of (1. 29) into (1,33), we have

7(8) = 8,9 (85) = o[ ia + 2 25N 4 8, — 2cos g, =0

(ky + 8502 k485
A — wC h—wgCs .
TS L ol
L T G0 S Ve R = e siny

The function @ (83) changes its sign on the segment [—1 - cospg, 1 -+ cos o]
only once. If we denote the root of the equation @ (63) =0 by 830 » the system
(1. 29) with (1, 32) will obviously have a unique solution §, = 8§, = 8§ = 0 in the
region

8.2 + 8,2 + 052 <<e?, % = 8% + 8,2 (1.34)

Thus when (1.15), (1.16) and (1. 32) hold, the controls (1,19) ensure that asymptotic
stability [7] of the unperturbed motion (1. 23) for all initial perturbations belonging to
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the region (1. 30), (1.34), and minimize the functional
T 1 (1. 35)
J = 4 S[‘;}* (pr — ®@81)* + ‘7;(‘11 — @gds)® +

4
to

3
1
s (r1 — 003)? + 4 E niuiz] dt
=1

2, Consider any position of relative equilibrium belonging to the class 1,2, Let
e.g. the x, -axis be collinear with the & -axis, the ;- and I3 -axeslie in the
oyz -plane and form an angle @, withthe y - and 2 -axes, and
1Po=ﬂ, 0<60<n, Cp=1t
We have

p=20, g= wgco88, r= w,sinb,
¢os 6,

I

a, =0, a,= —sin0, ag
ﬁl = 0, 52 = COS eo, ﬁa = Sin 90

under the condition that
Hl = 0,A 4(!)0(02 _— C3) Slll 90008 90 = Hs c08 eo - H2 Sin 60

Retaining the notation (1. 8) for the variations of the variables, we set the following
equations of perturbed motion;

(€1 — J1) pi" = (Coy + Hp + @,C; €08 8,) (r; + @, sin 6,) — 2.1
(Csry + Hjy + @4Cs sin 6) (¢ + @, cos 8,) -+ 2.1
30¢? (€3 — Cy) (N, — sin B;) (s + cos Oy) + u, (123)

M’ = Moy — Nady + 0 (N30s — ny8;) + 1y sin 6, — ¢, cosB, +
@, (8, cos By + 8, sin 6,) (123)

8," = 8,1y — 84, -+ @ (8, 8in 64 — 83 cos 6,) +- ry cos B, —
¢; sin 0, (123)

The relations (1. 10) now become
(Dl = 612 + 622 + 632 + 262 cos 90 + 268 Sin 60 = O (2.2)

D; = ny® + 1® + n5* + 2n3co8 6, — 21, sin Gy = 0
Oy = 6;m; + O6aMy + OsMs + My cos 8, — 8,8in O, + m sin 6, +
8;c080, =0

Let the following condition hold for the mements of inertia of the gyrostat-satellite.

C1 > Cz = Ca (2.3)

Having written the integral (1, 6) in terms of variations of the variables, we consider the
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relation connecting the functions (1, 6) and (2. 2), of the form

2V = 2H + 2o,P; — 30,2C;0; = (€1 — Jy) nt+ (2.4)
(Cy — ) g, + (Cs — J3r® — 20, (Cy — 1) psb, +
(C3 — Jo) @18, + (Cs — Ja)ribsl + A0, (8,7 + 65 + 657 +
3w, (C; — Cy)

where %; = const > 0 and where in the expression for 2H we have set

ll = 0, lz + mo (02 -_ Jz) cos 90 == kl cos 00, lg + (Do' (2. 5)
(Cs — Jg) sin 6, = A, sin 0,

When (2, 3) and
A > 0,0y (2.6)

the function (2,4) is a positive definite function of the variables P1» 10 T1,8;, 8,, 84
and 7Nj.

Repeating the above arguments, we can find the optimal controls u;°. The con-
trols have the form (1.19), the function F in the expression (1.17) has the form
{1.20), and the time derivative of the function (2. 4)

2V" = ~[ny(py — 048, + 1 /nz (91 — ©o8y)* + / ny-
(i — ®,85)%]

constructed using the equations of perturbed motion (2.1) with (1.19), (1.17) and (1. 20)
taken into account, is a negative sign-constant function of variations of the variables
used.

Similarly we can show that when the conditions (2. 3), (2. 6) and

Ay — aoC
mol(c {) 1_!(}03001>2 (2'7)

all hold, the manifold (1. 22) in which ¥* = () contains no compiete motions of the
system in the region

8.2 + 8.2+ 82 <<4, mPF Ml (2.8)

except the unperturbed motion (1.23). Thus, when the conditions (2.3), (2.6) and
(2.7) all hold, the controls (1.19) ensure the asymptotic stability of the unperturbed
motion (1. 23) relative to the variables P1» 91y T 85, 85, 65 and M1 for all initial
perturbations belonging to the region (2.8), and minimize the functional (1. 35).

In [8] it was shown that when C; = C, 5= Cy and 8, 5= Y,vand 3/,n , all posi-
tions of the relative equilibrium of class L. 2 can be asymptotically stabilized by mo-
ments applied to the flywheels, If on the other hand either the inertia ellipsoid of
the gyrostat-satellite is an ellipsoid of revolution i.e. €3 > Cp = C3 or 6 =
Y, 3/, then the position of relative equilibrium cannot be stabilized with respect
to all variables by applying moments to the flywheels since in these cases the system
is not fully controllable [9). Nevertheless, as it was shown before, in these cases we
can still attain the asymptotic stability of the positions of relative equilibrium  with
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respect to a part of the variables [1] by applying moments to the flywheels.
The author thanks V, V. Rumiantsev for proposing the problem and constant interest,
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